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Abstract—Recent advances in multimodal diffusion models
have enabled high-fidelity audio generation from silent video.
Yet, state-of-the-art systems such as MMAudio lack explicit
depth awareness, often producing sounds that contradict spatial
cues in the visual scene. This work introduces DeepMMAudio,
an extension of MMAudio that incorporates monocular depth
features to improve audio-visual alignment. Depth maps are
extracted using MiDaS DPT-Hybrid and encoded with CLIP, then
concatenated with visual embeddings and projected back into
the original latent space for joint training. Using the VGGSound
dataset and AV-Benchmark metrics, including Fréchet Distance,
ImageBind similarity, and DeSync, we compare the baseline
and depth-augmented models. Although Fréchet Distance de-
grades slightly, the depth-enhanced model achieves improved
semantic alignment and temporal synchronization, suggesting
stronger spatial awareness. Qualitative results further indicate
fewer spatial inconsistencies, such as the correction of erroneous
approaches or retreats by moving objects. Although training time
increases by 35% and convergence is slower, the results indicate
that integrating depth cues can enhance cross-modal coherence in
video-to-audio synthesis. Future work should explore optimized
depth encoders, higher-quality datasets, and fully converged
training to assess the complete potential of depth-aware audio
generation.

I. INTRODUCTION

The current state of the art in high-fidelity, synchronized
audio generation from silent video is MMAudio [1], which
employs a joint training framework based on multimodal Dif-
fusion Transformers (DiTs) [2]. Replacing traditional convolu-
tional U-Net architectures [3] with transformer-based models
operating on latent image patches, MMAudio improves scala-
bility and performance. By incorporating both video and text
inputs with Synchformer [4], the model effectively generates
audio that is semantically and temporally aligned with visual
cues.

Despite these advancements, MMAudio processes visual
inputs primarily as two-dimensional feature maps, ignoring
the acoustic properties in three-dimensional space. In reality,
depth, distance, and object movement fundamentally influence
auditory perception; for example, a car approaching the cam-
era sounds distinct from one moving parallel to it. Because
MMAudio lacks explicit depth awareness, it can generate
audio that contradicts the visual spatial dynamics. This study
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was directly motivated by such an artifact, in which a horse
running parallel to the camera had sound generated as if it
were running towards the camera.

To bridge the gap between visual distance and realistic au-
dio, this paper investigates how to improve audio generation by
explicitly incorporating depth features. Monocular Depth Es-
timation (MiDaS) [5] with the Dense Prediction Transformer
(DPT) [6] is employed to extract inverse depth maps, which
are encoded alongside visual and text features via Contrastive
Language-Image Pre-Training (CLIP) [7]. Following training
on the audio-visual VGGSound dataset [8] and other annotated
audio datasets, evaluating the performance using ImageBind
[9] for semantic alignment across modalities (including depth)
and the Patchout Fast Spectrogram Transformer (PaSST) [10]
for acoustic quality assessment.

II. RELATED WORK

Recent work by StereoSync [11] incorporates depth maps
into video-to-audio generation to facilitate mono-to-stereo
conversion. By employing RollingDepth [12] to extract depth
features and EVA-CLIP [13] for encoding, the model achieves
superior spatial and temporal alignment. Although our primary
focus is not spatial audio separation, these findings validate
that explicit depth cues contribute significantly to the perceived
realism of synthesized audio.

III. PROBLEM DESCRIPTION

The current state-of-the-art video-to-audio generation
model, MMAudio, lacks explicitly modeled depth-perception
features [1]. As a result, it struggles to consistently generate
audio that matches the visual depth, size, and trajectory of
objects, leading to some generated sounds with unrealistic
directionality and motion.

IV. METHODOLOGY

The implementation and evaluation of new depth map
features in MMAudio consisted of data preparation, model
modification, training setup, and evaluation.

A. Data preparation

The model was trained using five different datasets: VG-
GSound, BBCSound, AudioSet SL, and Clotho. VGGSound,
the primary audio-visual dataset, contains short, annotated



videos with corresponding audio [8]. The remaining three
datasets are annotated audio-only collections [14]–[16].

For model training, all five datasets were used to expose
the model to a variety of different audio-visual and audio-
only samples. However, for testing, only VGGSound was used
because it is the only dataset with video-to-sound pairings,
which are used to compare the generated audio against the
original ground truth.

A cleaning process was applied to the datasets before
training. During the gathering and unpacking of the archives,
several issues were found. For the VGGSound dataset, one
of the 20 archives was corrupted. Upon feature extraction of
the remaining files, over 500 were found to contain no audio.
Similarly, some of the files in the AudioSet SL dataset were
also corrupted. All of the identified corrupted or silent files
were excluded from both the training and testing sets.

Depth maps were extracted from the VGGSound videos us-
ing the MiDaS DPT-Hybrid model, yielding a single-channel,
monochrome inverse-depth map. To ensure compatibility with
subsequent network architectures that expect a 3-channel
(RGB) input, this single-channel output was stacked across
all 3 channels, resulting in a 3-channel video.

B. Model Modification

The model’s projection layer from the CLIP embeddings of
the visual features Fv = (1024d, 8fps) was modified, as seen
in Figure 1, by concatenating the CLIP embeddings of the
depth maps generated from MiDaS Fd = (1024d, 8fps), after
the CLIP embeddings of the visual features, resulting in Fc =
(2048d, 8fps). The decision to use CLIP embeddings for the
generated depth maps was driven by MMAudio’s existing use
of them for visual feature embedding.

The concatenated feature is then projected from Fc =
(2048d, 8fps) back to the original vector size of (1024d,
8fps) using a single fully connected linear layer Linear(2048d,
1024d). This enables the network to consistently combine
information from the standard RGB video and depth maps
without altering the rest of the architecture.

C. Training setup

Google Cloud Platform virtual machines equipped with
1 NVIDIA A100 80GB GPU, 16-core Intel Cascade Lake
processors, and 170GB of RAM each were used to run all
experiments.

The model was trained with a batch size of 448, for 300,000
iterations on the gathered datasets, once with and once without
depth features. To ensure a clear comparison of the base model
and the contribution of depth features.

D. Evaluation

Model performance was evaluated using the AV-Benchmark
framework and the following metrics: Fréchet Distance (FD),
ImageBind, and DeSync. These metrics assess the fidelity of
the generated audio. The Fréchet Distance was computed on
PaSST and PANNs embeddings to determine how well the
generated audio matched the ground truth audio. The PaSST

embedding was favored since it performed better on the HEAR
benchmark on the ESC50 dataset [17]. Cross-modal semantic
alignment was evaluated using the ImageBind similarity score.
Finally, DeSync quantifies the temporal synchronization be-
tween the audio and video visual data.

In addition to the quantitative metric scores, a qualitative
evaluation was conducted by reviewing the generated audio
on a subset of the data. This manual inspection focused on
assessing audio quality and verifying its semantic and temporal
coherence with the video visuals.

V. RESULTS

The original results from the MMAudio paper, along with
those of the retrained base and depth models, are presented in
Table I. The model with added depth features has 3,000,000
more parameters than the base model. Both retrained models
performed better than the original MMAudio paper on Fréchet
Distance but worse on ImageBind and DeSync scores. When
comparing only the retrained models, the depth model achieves
better ImageBind and DeSync scores while receiving slightly
worse Fréchet Distance.

TABLE I: Video-to-audio results on the VGGSound test
dataset with the Small 44.1kHz models.

Model Params FDPaSST ↓ ImageBind ↑ DeSync ↓

MMAudioOriginal 157M 65.25 32.27 0.444
MMAudioRetrain 157M 58.03 31.82 0.477
DeepMMAudio 160M 59.28 32.22 0.461

Qualitative analysis of a subset of generated samples reveals
that the model maintains high acoustic fidelity and perceptual
plausibility. While general performance remains comparable
to the baseline, specific instances demonstrate the benefit of
depth integration. For example, in the video of a galloping
horse, which initially motivated this study, the generated
audio exhibits improved spatial accuracy. Unlike the baseline,
the modified model correctly aligns sound intensity with the
subject’s distance, thereby eliminating the auditory artifact in
which the horse appears to approach the camera when moving
parallel to it.

The depth model took 35% longer to train, requiring 156
hours, 40 hours more than the baseline architecture’s 116
hours. This excludes the additional time required for feature
extraction, which also took significantly longer for extracting
the reverse depth maps.

The validation loss trajectories for both models are found
in Figures 2 and 3. These plots show distinct convergence
behaviors. The baseline model converged relatively quickly,
reaching a plateau around 250,000 iterations. In contrast,
the depth model had a steeper learning curve, with the loss
continuing to decrease even when training was stopped at
300,000 iterations.

VI. DISCUSSION

Verification of the baseline first establishes the integrity of
the replication. This is followed by an interpretation of the



Fig. 1: Overview of the DeepMMAudio flow-prediction network with depth features modification. The blue regions indicate
the modified components; the remainder is identical to the original MMAudio model [1].
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divergence in convergence behaviors and metric scores, effec-
tively highlighting the trade-off between geometric awareness
and acoustic precision, and by an outline of the study’s validity
and future work.

A. Baseline Verification

Comparing the metric scores in Table I, the retrained
MMAudio model achieves scores similar to those reported in
the original paper, indicating that the retraining of the baseline
model was successful. A possible reason for the differences in
scores, and specifically for better results for the baseline model
on the Fréchet Distance and worse results on ImageBind and
DeSync, is the absence of the AudioCaps dataset in the retrain
version. It could also be due to the different batch size used
in the original paper (512) versus ours (448).

B. Impact of Depth Features

Among the newly trained models, the depth model achieves
higher scores on both ImageBind and DeSync, indicating
that depth features enhance the model’s ability to interpret
visual input. These improvements likely stem from the model’s
increased awareness of scene geometry, which helps contextu-
alize motion and spatial structure—factors that are important
for synchronized audiovisual generation. This aligns with
results from the related work presented in Section II.

Contrarily, the Fréchet Distance for both the PaSST and
PANNs embeddings shows a slight decline. One possible
explanation is that integrating an additional depth modality
may lead the model to allocate more of its representational ca-
pacity toward spatial and geometric structure, leaving slightly
less emphasis on the features needed for fine-grained acous-
tic classification and spectrogram-level fidelity. In this view,

adding depth could introduce a mild trade-off, where the model
balances more information sources and, as a result, becomes
somewhat less aligned with the ground-truth audio patterns
emphasized by the Fréchet Distance.

C. Training Convergence

Although both architectures were trained for the same
number of iterations, as shown in Figures 2 and 3, their con-
vergence behaviors diverged significantly. The baseline’s early
saturation suggests it reached capacity around 250,000 itera-
tions, at which point early stopping could have been employed.
In contrast, the depth model’s sustained improvement suggests
it was navigating a more complex optimization landscape,
requiring longer training to integrate and fully leverage the
additional depth features. While time and budget constraints
prevented further training, the depth model’s consistently
lower loss, even before convergence, demonstrates that the
added depth features yielded better predictive potential.

D. Validity

The validity of our results is supported by the controlled
experimental setup, in which the baseline MMAudio model
was retrained under identical conditions to those used for the
depth model. However, as noted in the discussion of training
convergence, the depth model had not fully converged by the
end of the 300,000 iterations. This suggests that the reported
results likely underestimate the architecture’s full potential
when depth maps are used.

E. Future Work

Several factors affect the results of this study. The older
MiDaS DPT depth model used to generate inverse depth maps,



and the use of CLIP for depth embeddings, are examples
that could be examined in future work to identify the best
available combination. Finding better depth map models and
other ways to encode the depth map information. It would
also be interesting to see the full effect of the depth model by
training it until the validation loss converges.

Future work could also investigate how the depth features
propagate through the model, whether they affect the final
result, and whether the model learns to ignore them. Addi-
tionally, improving the video-to-audio dataset is necessary.
Examining VGGSound videos revealed many instances of low
quality and questionable content. Among the videos examined,
the computer-generated annotations were also sometimes irrel-
evant.

F. Summary

In summary, adding depth features improves scores on Im-
ageBind and DeSync, indicating an enhanced ability to reason
about cross-modal correspondence. However, the improvement
is minimal, and human perception of the generated audio
remains essentially unchanged, while training time increases
significantly. The question of whether depth features provide
a practical benefit relative to their computational cost remains
open to further exploration.

VII. OPPOSING GROUP

Our opponent group does not work directly on the same
thing as we do. We are working with videos, audio, and text
in a large multimodal model, while they are working with
training an LLM on text data to generate music playlists.
Therefore, we have not been able to apply each other’s findings
directly. However, during the project, both groups have been
working at the Epidemic Sound office, and we have mainly
discussed dataset access and model evaluation with the other
group.

Gathering data and getting access to good datasets have
been problematic for both groups. We have public datasets,
but the data is missing, corrupted, or cannot be downloaded,
while the other group had to request data, which would take
longer to wait for than to make a dataset themselves.

Evaluation of the final models is also different. Our model
can be tested by generating audio, qualitatively evaluating
the outputs by watching and listening to them, and assessing
whether the audio is a good fit for the visuals. We also
have a few other evaluation models that give output scores,
which we can use for a quantitative evaluation. The opposing
group currently does not have any way to do a quantitative
evaluation, their only way is to visually look at the playlist
and determine if they are good or not.
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APPENDIX B
FULL RESULTS
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PaSST, PANNs, and VGG embeddings, with ImageBind and
DeSync, can be found in Table II for model comparison.
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Fig. 2: Validation loss over iterations for the training of the retrained baseline MMAudio model.

Fig. 3: Validation loss over iterations for the training of the new DeepMMAudio depth model.

TABLE II: All measured Video-to-audio results on the VGGSound test set with the Small 44.1kHz models.

Model Params FDPaSST ↓ FDPANNs ↓ FDVGG ↓ KLPaSST ↓ KLPANNs ↓ ImageBind ↑ DeSync ↓

MMAudioOriginal 157M 65.25 5.55 1.66 1.44 1.67 32.27 0.444
MMAudioRetrain 157M 58.03 4.59 1.30 1.43 1.66 31.83 0.477
DeepMMAudio 160M 59.28 5.03 1.51 1.43 1.66 32.22 0.461



TABLE III: Project Timeline and Key Milestones: Video-to-SFX Generation

Phase Focus Area Key Activities & Milestones Collaboration

Phase 1:
Inception &
Setup
(Sept 9 – Sept 29)

Scoping,
Literature
Review, and
Infrastructure

• Defined project scope to add depth and optical flow
understanding to existing models.

• Conducted literature review and tested initial tools, in-
cluding RAFT and MiDaS, for feature extraction.

• Established Google Cloud Platform (GCP) environment
and successfully installed MMAudio on an Nvidia L4
instance.

• Verified feasibility by running demo training and testing
audio generation on reversed videos.

The work was split so that each group
member researched different aspects,
including how to extract depth features,
how MMAudio works, and other rele-
vant topics. Each group member also
tried to set up environments to run the
models, either locally or on GCP.

Phase 2:
Methodology &
Architecture
(Oct 6 – Oct 27)

Model Design
and Pipeline
Modification

• Designed architecture: Video → MiDaS → CLIP →
Concatenation with CLIP visual output.

• Modified the forward pass and model flow to accept extra
depth features via concatenation.

• Confirmed MiDaS implementation and output sizes (3×
384× 384) match normal video inputs.

• Enabled pulling updates from the repository to the GCP
VM using Skypilot for syncing the working directory.

• Pontus and Rikard modified the
model, changing the forward pass
and flow to incorporate depth fea-
tures.

• Hugo and Samer incorporated the
MiDaS model in the pipeline.

• Each group member was granted
access to Epidemic Sound’s GCP
and configured it so that all of us
could access the machines.

Phase 3:
Implementation
& Training
(Nov 3 – Nov 17)

Data
Processing
and Model
Training

• Downloaded the datasets, and moved data to a GCS
bucket.

• Developed and debugged training scripts, removing cor-
rupted data and fixing configuration errors.

• Initiated baseline and depth training scripts and set up
batch prediction pipelines.

• Executed feature extraction scripts on the prepared data.

• All members browsed the internet
to locate ZIP files to download.

• Feature extraction and model
training for both the base
model and the depth model
were distributed across different
machines, with each group
member responsible for specific
components.

Phase 4:
Evaluation &
Results
(Nov 24 – Dec 8)

Benchmarking,
Comparison,
and Reporting

• Completed full feature extraction of depth features and
trained the depth and base model for 300,000 steps.

• Performed batch predictions and evaluations on both
baseline and depth checkpoints.

• Consolidated results showing the new model (”DeepM-
MAudio”) outperformed the retrained baseline in some
aspects.

• Documented final metrics.

• Hugo and Samer wrote the report
and made the presentation.

• Pontus and Rikard each used one
machine to run the evaluation
scripts. One machine evaluated
the base model, and the other
evaluated the depth model.



TABLE IV: Project Work Diary and Timeline

Week of Activities and Technical Milestones

Sep 9 Project initialization and scope definition. Began literature review and established the goal of adding depth and optical
flow understanding to the existing MMAudio model.

Sep 15 and Sep 22 Verified MMAudio inference locally. Successfully tested feature extraction using RAFT and MiDaS on custom videos.
Began setup of Google Cloud Platform (GCP) environment and Deep Learning VMs.

Sep 29 Configured GCP instance (Nvidia L4). Conducted initial experiments generating audio for reversed videos to test temporal
sensitivity. Formulated the primary Research Question regarding the value of depth maps in video-to-audio synthesis.

Oct 6 Designed the architecture modification plan: Extract depth via MiDaS, encode via CLIP, concatenate with visual
embeddings, and project using a linear layer. Analyzed data representations for the new depth features.

Oct 20 Implemented the modified forward pass to accept extra features. Successfully tested the flow with concatenation on random
depth features. Delegated core tasks: Training (Pontus), Evaluation (Rikard), and Feature Extraction (Hugo).

Oct 27 Confirmed MiDaS implementation aligns with video dimensions (3×384×384). Solved repository synchronization issues
on GCP. Added toggles for summation vs. concatenation of features.

Nov 3 Debugging phase. Attempted full test training loops with fewer epochs. Encountered and resolved scripting errors preventing
full training completion.

Nov 10 Large-scale data acquisition. Downloaded VGGSound dataset, fixed configuration errors, and removed corrupted data/files
from the training set.

Nov 17 Data preprocessing pipeline. Subsampled VGGSound and moved data to GCS buckets. Started full feature extraction
(Depth) and initiated the training scripts for both the Baseline and Contribution (DeepMMAudio) models.

Nov 24 Training and Validation. Batch predicted MP4s from baseline and contribution checkpoints. Performed full feature extraction
of depth features. Initial evaluation results indicated the new model outperformed the retrained baseline.

Dec 1 Final Training and Analysis. Models reached 300,000 training steps. Collected final evaluation scores.

Dec 8 Project Closure. Code cleanup, organization of example predictions, and preparation of the final report and presentation.
Presented at the Epidemic Sound office.
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